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EINSTEIN MANIFOLDS OF DIMENSION FIVE
WITH SMALL FIRST EIGENVALUE
OF THE DIRAC OPERATOR

TH. FRIEDRICH & I. KATH

1. Introduction

Let M™ be a compact Einstein spin manifold with positive scalar curvature
R > 0 and denote by D: T'(S) — I'(S) the Dirac operator acting on sections
of the spinor bundle. If A; is the first eigenvalue of this operator we have

I1n-R
2

> —
’\1—4n—1

(see e.g. [4]). Thus, there arises the interesting problem to classify all those

Einstein spaces where the lower bound :l:% r(:;_Rl)j actually is an eigenvalue
of the Dirac operator. The corresponding eigenspinor v satisfies the stronger
equation
1 R
Vx¥ = F o atn = D
(see e.g. [4]) and these spinors are sometimes called Killing spinors (see e.g.
[9], [16]). In case n = 4 the only possible manifold is M* = 54 (see e.g. [5]).
In dimension six each solution of the equation Dy = £./(6 - R)/5 defines
a (nonintegrable) almost complex structure (see e.g. [8]). Furthermore, the
assumption that £3+/(n - R)/(n — 1) is an eigenvalue of the Dirac operator
imposes algebraic conditions on the Weyl tensor of the space (see e.g. [5])
as well as on the covariant derivative of the curvature tensor and the har-
monic forms on M™ (see e.g. [9]). On the other hand, in the dimensions
5,6,7 examples of Einstein spaces different from the sphere are known for
which £24/(n-R)/(n — 1) is an eigenvalue of the Dirac operator (see e.g.
(4], [7], (17]). Moreover, if M™ is a Kihler manifold, K.D. Kirchberg proved
the stronger inequality A > 4(n + 2)R/n (see e.g. [12]) and solved in the
complex dimension n/2 = 3 the corresponding classification problem (see e.g.
[13]); the only possible Einstein-Kahler spaces of complex dimension three

X9

realizing /2R as an eigenvalue of the Dirac operator are P3(C) and F(1,2
3
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with their canonical metrics. The aim of this paper is to study the above men-
tioned classification problem in the case of 5-dimensional real Einstein spaces.
First of all we prove that any solution of the equation Dy = +1/5R% defines
an Einstein-Sasaki structure on M?%. Conversely, if M5 is a simply-connected
Einstein-Sasaki space then the equation under consideration has a nontrivial
solution. In the next step we classify all regular contact metric structures aris-
ing from a nontrivial solution of the equation Dy = %\/5?1,{;. The regularity
assumption implies that M? is a fiber bundle over a four-dimensional Einstein-
Kéhler manifold X* with positive scalar curvature. Therefore, we know the
possible X* (= §% x §2%,P?(C) or the del Pezzo surfaces Py 3 < k < 8)
as well as the topological type of the fibration 7: M® — X4%. In particular,
if M® is a simply-connected, compact 5-dimensional Einstein spin manifold
such that Dy — %\/ﬁw admits a nontrivial solution and the corresponding
Sasaki structure is regular, then M? is isometric to the sphere S5, or to the
Stiefel manifold V, o with the Einstein metric considered in [11], {4], or M3 is
the simply-connected S!-bundle with Chern class ¢} = ¢; (P) over one of the
del Pezzo surfaces Py (3 < k < 8). In the last case M? is diffeomorphic to the
connected sum M3 ~ (82 x S3)#-.-#(S? x S%) and there is a one-to-one
correspondence between Killing spinors on M5 and Einstein-Kihler metrics
on the del Pezzo surface Py. The existence of Einstein-Kéhler structures on
Py, has been recently proved by Tian and Yau (see [21], [22]).

2. Einstein-Sasaki manifolds in dimension 5

We introduce some notation concerning contact structures. A general ref-
erence is [3]. A contact metric structure on a manifold M3 consists of a 1-form
7, a vector fleld €, a (1,1)-tensor ¢ and a Riemannian metric g such that the
following conditions are satisfied:

(2) 1 A (dn)* #0.

(b) n(§) =1, p(§) =0.

() p?=—-Id+nQ®¢.

(d) g((X), 0(Y)) = g(X,Y) — n(X)n(Y).

() dn(X,Y) = 29(X,p(Y)) with dn(X,Y) = X(n(Y)) - Y(n(X)) —
n[X,Y].

Formal consequences of conditions (b) and (d) are the equations n(X) =
9(X, €), () = 0.

In case £ is a Killing vector field we call the given structure on M® a
K-contact structure. This is equivalent to

() Vx&=—p(X).
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A Sasaki manifold is a K-contact structure satisfying the integrability con-
dition
[e,0] +dné =0
or, equivalently, ‘
(g) (Vxe)(Y) = g(X,Y)¢ —n(Y)X.
The curvature tensor of a Sasaki manifold commutes with ¢ and has the
following special property:

R(X,Y)¢ =n(Y)X - n(X)Y.

In particular, if M5 is a 5-dimensional Einstein-Sasaki manifold we obtain
for the scalar curvature the value R = 20, and the Weyl tensor W satisfies
W(X,Y)¢& = 0. Denote by T* C T(M®) the bundle of all vectors orthogonal
to £&. According to W(X,Y )€ = 0 we can consider the Weyl tensor of M5 as

a linear transformation
2 2
w: AT - A\T(Th).

T" is an oriented 4-dimensional bundle and, consequently, we have the al-
gebraic Hodge operator *: A%(T*) — A%(T"), obviously different from the
Hodge operator of M?3.

Proposition 1. Let (M®%;p,£,n,g9) be a 5-dimensional Einstein-Sasaki
manifold. Denote by W: N*(T*) — A*(T") the Weyl tensor on the hori-
zontal bundle. Then W 1s anti-selfdual with respect to the algebraic Hodge
operator of the bundle T, i.e. *W = —W.

Proof. We fix an orthonormal basis e;,eq = (e1), €3,e4 = p(e3) in T*.
By the rule o(XAY) = o(X)Ap(Y), ¢ acts on A*(T*) = Ai(Th)EB/\i (TH)
and we see immediately that in the basis {e; Aea +e3Aeq, €1 Aes—eaAeg,e1 A
€4 +e2 Neg} of /\i(T") the matrix representation of ¢ is given by

1 0 0
=10 -1 0
0 0 -1

Since the curvature tensor commutes with the transformation ¢ in a Sasaki
manifold, the Weyl tensor W: A*(T") — A%(T") also commutes with .
Consequently, we obtain for W,.: A% (T*) — AZ(T") the matrix representa-

tion
A 0 O
wi=|0 B D
0 D C
with
A =Wizia + 2Wi234 + Waysg, B = Wis13 — 2Wi324 + Waaa4,
C = Wig14 + 2Wi423 + Wagas, D = —2(Was14 + Wagas).
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We prove A = B = C = D =0, In fact, since M? is an Einstein space with
scalar curvature K = 20, we have
Wigiz2 = Ri212 +1, Waqzq = R3a3a +1, Wiaza = Rizaa,
and taking into account Rj55; = 1 (e5 = €) we obtain
A= Ry212 + R3434 + 2R1234 + 2
= (—Ry221 — Ri331 — Ri4a1 — Ris51)
+ (—Ra114 — Ra224 — R334 — Rys54)
+ Ri331 + Ri4a1 + Ra114 + Ragas + 2R1234 + 4
= — Ri1 — Raq + 2(R1331 + Ri1441 + R1234) + 4
= — 8+ 2(Ria31 + Riga1 + Rugaq) + 4
The Muskal-Okumara lemma (see e.g. [3, p. 93]) now yields _
Ri23s + Ryi331 + Riaa1 = —dn(es, eq)g(e1, e1) = —2g(es, p(eq)) =2

and we finally have A = 0. In the same way we prove B = C = 0. Finally, we
calculate D—using once again the Einstein equation and the Muskal-Okumara
formula—

D = —2(Waqg14 + Waazs) = —2(Ra414 + Roaz3) = 0.

3. The SU(2)-reduction defined by a nonvanishing spinor

Consider the group Spin(5) and its complex spinor representation «: Spin(5)
— GL(As). Spin(5) acts transitively on the 7-dimensional sphere S(As) =
{ € As: || = 1}. The isotropy group H(t) of a fixed spinor ¢ # 0
is a subgroup H(v) C Spin(5) which projects one-to-one onto a subgroup
H () c SO(5) which is conjugate to SU(2) C SO(5). We fix an orthonormal
basis €1, -- ,e5 in R% and identify As with C2 ® C2. Let us introduce the
basis u(e1,€2) in As (see e.g. [4]):
. 1 1
u(e1,€2) = ule1) ® (e2), with u(1) = (—i)’ u(=1) = (2>
Denote by g1, g2 and T the matrices

_f® 0 _ {0 2 T = _ ({0 -1
g1 = 0 —i/° g2 = i 0 ) =q192= 1 0 .
The Clifford multiplication of a vector by a spinor is then defined by

61=I®gla 62=I®g2, 63=igl®T)
e4 =192 T, e5= —iT®T.
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The Lie algebra § of the isotropy group of the spinor g = u(1,1) is given by
h= {a €spin(5): - u(1,1) = 0}

_ Z Cwiz+w3ze =0 wig+wez=0
- Wi s — ey =0 wis = Wos = was = was =0 [
1<iar<s 13 — Waq 15 25 35 45

Using this concrete realization of the spin-representation one immediately
proves

Lemma 1. (a) Let 11,92 € S(As) be two orthogonal spinors of length
one and suppose that for the corresponding Lie algebras h(1h1) NBH(w2) # {0},
Then for each vector X € RS it holds that

(wl&X ° '([)2) = 07

where X - 1o denotes the Clifford multiplication of the vector X by the spinor
Pa.

(b) For each spinor ¥ # 0 there ea:zsts a unique vector £ € R® of length
one such that & - ¥ = 1.

Denote by 7: Q — M?® the frame bundle of the oriented Riemannian man-
ifold (M3, g) and let 7: P — M?® be a spin-structure. If ¢ € I'(S) is a section
of length one in the spinor-bundle S = P x, Aj, then we consider

={p € P:¢(n(p) = [p,u(1,1)]}.

Since Spin(5) acts transitively on S(As) with isotropy group H(vo) = SU(2),
PO is a SU(2)-principal fiber bundle over M5. Denote by A: P — Q the two-
fold covering of the spin structure over the frame bundle. Then A| po: P —
MP%) = QP is bijective and, consequently, we obtain an SU(2)-reduction
QP € Q of the frame bundle Q. We now investigate the topological type of this
reduction in the case that M?® is simply-connected. The classifying space of
the group SU(2) = Sp(1) is P™(H), a CW-complex of the type e?Ue*Ue8U- - -
Since M?® is a 5-dimensional CW-complex we see that the isomorphy classes
of SU(2)-bundles over M® correspond to the set [M5, P®(H)| = [M3,54].
Using the classification theorem of Steenrod (see e.g. [18]) we obtain

H3(M5; Z,)
. Squ. H3(M?%;2)’
where u,: H3(M%;Z) — H3(M?®; 2,) is the Z-reduction and Sq® denotes
the second Steenrod square. Since M® is a spin-manifold its second Stiefel-
Whitney class vanishes and, consequently, (look, for example, into the Wu-

formula!) Sq% = 0. Therefore, on a 5-dimensional, compact, simply-connected
spin-manifold M® there are precisely two SU(2)-principal fiber bundles:

(M5, S%) = H5(M%; 2,) = Z,.

[M5;84] —
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Theorem 1. Let M® be a 5-dimensional, compact simply-connected spin-
manifold with a nowhere vanishing spinor field ¢y € T'(S). Then the following
conditions are equivalent:

(1) Q° is the trivial SU(2)-principal fiber bundle.

(2) The subbundle Th = Q° Xgy() R* C TMS is trivial,

(3) M® is parallelizable.

(4) dlIIlHQ(Ms,ZQ) =1 mod 2.

On the other hand Q° is a nontrivial SU(2)-principal fiber bundle if and
only if dim Hy(M®; Z3) = 0 mod 2.

Proof. The implications (1)=-(2)=>(3) are trivial, (3) = (4) follows from
classical results concerning vector fields on spin-manifolds (see [20]). Sup-
pose now that dim Hp(M?®;Z2) = 1 mod 2 and fix a point mg € M®. The
space M°\{mgo} has the homotopy type of a 4-dimensional CW-complex and
71 (M®) = 0 implies H*(M5\{mg};Z) = 0. Using the Hopf Classification
Theorem we obtain '

[M*\{mo}; P®(H)] = [M®\{mo}; §*] = H*(M*\{mo}; Z) = 0.

This means that the bundle Q° is trivial over M3\{mg}. Consider a section
X* = (X1, - ,X5) in Q° over M3\{mo}. The index Ind(X*) is an element
of m4(SU(2)) = Z,. Furthermore, if Ind(X*) = 0 then QP is a trivial bundle
over M5. We calculate the index of X* in the following way: Look at the pair
(X1, X2) of vector fields on M5\ {mq} and its index Ind(X;, X2) € ma(Vs,2) =
Z,. An easy homotopy argument shows that the map f: SU(2) — SO(4) —
SO(5) — Vs,2 = SO(5)/SO(2) induces an isomorphism fx: 74(SU(2)) —
74(Vs,2). Consequently, Ind(X*) vanishes in 74(SU(2)) if and only if
Ind(Xy, X2) vanishes in m4(Vs2). Now the index of a pair of vector fields
with isolated singularities is well known (see e.g. [20]):

2
Ind(X1,X,) = Y _ dim Hy(M®; Z,)
=0 ‘
=14 dim Hy(M5; Z;) mod2.

This proves the implication (4) = (1).
Remark. Using similar techniques one can show that in case the SU(2)-
reduction Q° C @ is nontrivial it does not admit a reduction to the subgroup

U(1) c SU(2).

4. The Einstein-Sasaki structure defined by a Killing spinor

Let ¢ € T(S) be an eigenspinor of the Dirac operator corresponding to the
eigenvalue :I:%\/SR on a compact, 5-dimensional Einstein spin-manifold M3
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with positive scalar curvature R,
1
Dy = :EZ\/ S5Ry.

Then 1 satisfies a stronger equation, namely

VR
4v/5

where X -9 denotes the Clifford multiplication of the vector X by the spinor
1 (see e.g. [4]). Such spinor fields are sometimes called Killing spinors (see
e.g. [9]). It is well known that the length |¢| of ¢ is constant.

Denote by E1 C L?(S) the eigenspace of the Dirac operator corresponding
to the eigenvalues :t% SR, respectively.

Proposition 2. If M3 is not conformally flat then dimEy < 1.

Proof.  Suppose we have two solutions 21,12 satisfying

1
Vxth; = ———=vVRX -1 i=1,2).
X"/) 4\/5 1/)2 ( s )
Without loss of generality we can assume that (1,%2) = 0 since X (¢1,%2) =
(Vx¥r,92) + (%1, Vxpz) = 0.
Fix a point mg € M3 such that the Weyl tensor does not vanish at mg.
Then we have for any 2-form n? € A?

W(n*) ¢1=0=W(n*) ¢,

where W: A*(TM5) — A*(TM?3) is the Weyl tensor (see e.g. [5]). Since
W # 0 at mp we apply Lemma 1 and conclude {¢;,X - ¢3) = 0 for any
vector X € Ty, (M®). Consider a local frame s = (s1,--- , s5) in the SU(2)-
bundle Q° C @Q corresponding to 11 as well as the section s* in the reduction
PO of the spin-structure P. Then we have (locally) ¥; = [s*,u(1,1)] and
(%1, X - 92) = 0 for each vector X implies 12 = [s*,2 - u(—1,—1)] with a
complex valued function z. Consequently, we obtain

1
Vx1 = sz] Jeseju(l,1) = -—_VRX- u(1,1),
z<] 4\/5

Vxtpe = dz(X) - u(—-1,-1} + = sz] Jeie;u(—1,—1)
z<J

1
~—VRX -u(-1,-1),
N ( )
where w;; are the connection forms of the Riemannian manifold M 5 with
respect to the frame s. Using the formulas for the Clifford multiplication
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given above we conclude in particular (X = ¢;)

— wis(s1) + twaes(s1) z—\/_

2\/'
—wis(s1) —twas(s1) = Zm\/ﬁa

thus a contradiction.
Remark. Consider a Killing spinor ¢ with

Vxth=AX (,\ :l:;—/_f—;)

and the corresponding SU(2)-reduction @Q° of the frame bundle Q. If s is a
local section in @° we have

Zwu Jese;u(l,1) = AX - u(1,1).

z<_1
Denote by ¢!, --,0° the dual frame to s;,---,ss5. Then an algebraic calcu-
lation yields the following formulas:

wiz + Wag = 2X0°, Wiz —wae =0, wig+waz=0,
Wiy = —2/\0'2, Waos = 2/\0’1, Wz = —2/\0'4, Wy = 2/\0’3.

We consider now an Einstein space (M3,g) such that R = 20 as well as a
Killing spinor ¥ satisfying Vx¢ = —%X - 1. According to Lemma 1 there
exists a unique vector field £ of length one such that & -4 = 3. Furthermore,
we define a 1-form n by n(X) = (X - ¢,%)/i and a (1,1)-tensor ¢ := —V¢.

Theorem 2. Let (M3, g) be an Einstein space with scalar curvature R =
20 and Killing spinor ¢. Then (M®;p, €,n,g) is an Einstein-Sasaki manifold.

Proof. We must check the conditions (a)—(g) defining a Sasaki structure
in our situation. For the local calculations we choose a frame s in the SU(2)-
reduction. We have

an(X,Y) = X (Y, 9) - Y (X,9) - (X, Y1, )

= H{(YVx, ) + (Y, Vi) — (XVyth,9) — (X0, Vyp)}

1
= —2((YX = XY)$,9)

and, consequently,
dn =2(c' Ao? + 0% Ao?).
This implies immediately
n Adn Adn = 8dM°>.
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The equation n(¢) = 1 follows directly from the definition of £ and 7. We
differentiate the equation £ - ¢ = {7 and obtain

(Vx€) ¢+ EVxy =iVxy
~p(X) %~ 26X = =X -4,

In particular we have o(X)y = iX - ¢ for each X orthogonal to £&. Replacing
X by ©(X) we have

1 1
—P*(X) ¥ - SEp(X)Y = —50(X) - ¥.
Combining the last two equations we obtain
1 .
~p*(X) ¥ - 5(X +i€X)p =0.

If X is parallel to £ it follows that ©?(X)-¢ = 0 and, consequently, ©?(X) = 0.
If X is orthogonal to £ we have 2(X+i€X)y = 3 (X—iX &)y = L(X—?X)p =
X -1 and

{P*(X)+X}-yp=0.

The last formula implies ©?(X) = —X in case X is orthogonal to £. Summing
up we proved p? = —Id +n ® €.

We prove now that ¢ is a Killing vector fleld, i.e.  is antisymmetric. We
already know

P(X) §+ 5EXY = X .
We multiply by Y -4 from the right and left side:
(X)W, Y 9) + 5 (6X8,Y9) = 5 (X8, Y9),
(Y, 0(X)) + 5 (Y, EX8) =~ (Y, X9)
Taking into account Y - o(X) + o(X) - Y = —2¢(Y, ©(X)) we obtain

29(Y, (X)) |W|? + Re((£X9, Y9)) = —Im(X4, Y ).

V Finally we remark that the real part of (£X, YY) and the imaginary part of
(X1,Y ) are antisymmetric in X and Y. It follows that

9(Y,o(X)) = —g(X, o(Y)),

i.e. £ is a Killing vector field.
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The equation g(¢(X),¢(Y)) = ¢(X,Y) — n(X)n(Y) is now a formal con-
sequence of some formulas we already proved:
9(p(X), p(Y)) = —9(¢*(X),Y)

=~g(-X +n(X)¢§,Y) = g(X,Y) —n(X)g(¢,Y)

=9(X,Y) —n(X)n(Y).
We prove the property dn(X,Y) = 2¢g(X, o(Y))—using the fact that & is a
Killing field—as follows:

dn(X,Y) = Xn(Y) - Yn(X) - n[X,Y]
= Xg(f,Y) - Yg(f,X) - g(fa [X7 Y]) = g(vX§a Y) - g(VYf,X)
= —g(p(X),Y) + g(X, p(Y)) = 29(X, p(Y)).
It remains to prove the integrability condition (Vyp)(X) = ¢(X,Y)€ —
n(X)Y. We again start with o(X) - ¢ = (X — £€X) - ¢ and differentiate
this equation:
Vy(@(X)) ¢ - 3p(X)Y9 = 3(iVyX = Vy&- X — EVy X) -9
+5(iX — €X)(-3Y ).

On the other hand we have

e(Vy X)) = 3(iVy X — EVy X)y.
This implies ,

1 XY - XY
(Ore)x) v = 3 {0y +emx + ELZEL Ly,

First of all we consider the case that X and Y are orthogonal to & Then
(XY —iXY)yp=0and p(X) v = %(iX —&X)y = 1X+. In this situation
we have

(Vye)(X)y = 3{e(X)Y +o(Y)X}¢

= S{=Yp(X) ~ 2(Y; p(X)) - Xp(¥) — 26X, 0V ))}¥
= H{~YX —iXY}p = (X, Y)E v
and finally (Vy@)(X) = g(X, V)&
The second case we want to consider is X = &. Then
(Vye)(X) = Vy (p(€) ~ p(Vy€) = *(Y) = =Y +n(Y)¢
IfY = ¢ we have

{EXY —iXY ) ={-XE —iXEY ={X + X}y =2X -y,
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(X orthogonal to &) and it follows that
(Vye)(X) -4 = 3{p(X) €+ X} = 3 {ip(X) + X}¥ = 3 {{*X + X}y = 0.

The last equation implies

(Vep)(X) =0=g(&, X)€ —n(X)E

for each X orthogonal to . Last but not least we consider the case X =Y = &.
Then we have

(Vep)(€) = Ve(p(€) — 0(Ved)
=0—p?(§) =0=g(& )¢ —n(E)¢

and the integrability condition is proved.

Remark 1. The existence of a Killing spinor ¥ imposes algebraic condi-
tions on the Weyl tensor W, namely W (5?) - ¢ = 0 for any 2-forms n?. In the
case of dimension five this implies

Z W@-je@-eju(l, 1)=0.

1<i<5<5

Taking into account the structure of the Lie algebra h described in 83 we
conclude '

Wis + W3y =0, Wiz —Way =0, Wig+Wy =0, W;5=0,

and this is precisely the anti-selfduality condition for the Weyl tensor

2 2
w: AT - N\ (@),
which is satisfied automatically in any Einstein-Sasaki space (Proposition 1).

Remark 2.  Using the properties of the Sasaki structure we have in par-
ticular for the Lie-derivative:

Fn=0, F(dn) =0, Fe=0.

Remark 3. Obviously, if we start with a spinor satisfying Vx¢ = %X )
we obtain in the same way an Einstein-Sasaki structure.

5. A simply-connected Einstein-Sasaki manifold
admits a Killing spinor

Theorem 3. Let (M5;p,£,1m,9) be a simply-connected Einstein-Sasaki
mantfold, with spin-structure. Then the equations Vxy = :I:%X - have
nontrivial solutions.
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Proof. Consider the subbundle F of the spinor bundle S defined by

E={y€S: =14, {20X)+EX —iX}yp=0
for each vector X € TM°}.
Using the algebraic description of Ay given above it is easy to see that F is a
1-dimensional complex subbundle of §. We introduce a covariant derivative
V:T(E) > T(T*® E) in E by the formula
6x'd) =Vxy+ %X - .

First of all we must prove that Vx4 is a section in E if 1 belongs to T'(E).
Suppose that £y = i3 and {2p(X) + €X — iX}9 = 0. Then

Vy€ -9 +E&Vyy =1iVyy,
Vy &+ € (Vyy+ 1YY) — 36Y % =i(Vyy + 3YY) — 4iYy,
$@VyE— €Y +3iY )0+ E(Vyy) = i(Vy ).
Since we have a Sasaki structure it holds that Vy & = —p(Y). ¥ is a section
in E. This implies
E(Vyy) =1i(Vyy).

In the same way we prove the second algebraic condition for Y~7y1,b. We dif-
ferentiate the equation ‘

{20X) +€X -iX}y =0
with respect to Y and we use the Sasaki conditions ¢ = —V¢, (Vyp)(X) =
g(X,Y )¢ — n(X)Y. After some obvious calculations we obtain

{29(X’Y)f = 2(X)Y - p(Y)X - p(X)Y - .fX_Yé‘_iﬂ} "
+{20(X) + £X —iX}Vyy =0.

The first term vanishes. Consider for example the case that X and Y are
orthogonal to £. Then we have {£XY —iXY }y = 0 with respect to £y = @y
and, consequently, the first term reduces to
{29(X,Y)¢ - (V)X — o(X)Y }y
= {29(X.Y)i + (29(p(Y), X) + Xp(Y)) + (29(0(X),Y) + Y o(X))}¥
={2¢(X,Y)i+ Xpo(Y)+Yp(X)}y.

Since 1 is a section in E, we have

{20(X) + €X —iX}y =0.
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I X is orthogonal to £ we obtain
o(X) -y =1X ¢
The first term mentioned above thus eventually reduces to
{20(X,Y)i +iXY +iY X} = 20{g(X,Y) — g(X,Y)}¥ = 0.

We handle the cases where X or Y is parallel to £ in the same way. Then we
obtain

{20(X) + £X - iX}Vyy =0,
ie. 6]/1/) is a section in E.

The calculation of the curvature tensor R of the connection V in the bundle ,
E yields the formula

R(X,Y)$ = (VxVy — VyVx = Vixyo + 3 (XY —YX)y

(Znyl_,eie_,ﬁ—XY YX)Q/)— Z:ny,_,e,‘e_7 P

2% i,y

with the Weyl tensor W. Here we use the formula
Wijke = Rijke + (6ix65e — 6iebjk)

valid in a 5-dimensional Einstein space with scalar curvature R = 20. Since
M?3 is an Einstein-Sasaki manifold, we have W (&, X) = 0 and we obtain

R(X, Y)Y = —Ze, (X,Y)ei - ¢,

where {e1,e2,€3,6e4} is a frame in T* orthogonal to £&. A simple algebraic
calculation—using Proposition 1, i.e. *#W = —W in A%(T")—now shows

R(X,YW=0, ¢eTI(E).

Consequently, (E, 6) is a flat 1-dimensional bundle over a simply-connected
manifold M®. Thus there exists a 6—para.lle1 section ¢ in E, i.e. a spinor field
satisfying the equation Vx = —3X - 4.

Remark. The same procedure allows us to construct a solution of the
equation Vxi¢ = +-§-X - .

Corollary. In case M® is simply-connected we have dmE, = dim E_,
where Ex. C L%*(8S) is the eigenspace of the Dirac operator corresponding to
the eigenvalue ﬂ:%\/ﬁ.
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6. The classification of compact Einstein spin-manifolds
admitting a Killing spinor with regular contact structure

A Sasaki manifold (M5;p, £, 1, g) is called regular if all integral curves of &
are closed and have the same length L (see e.g. [3]). In this situation we have
an S'-action on M?® and the orbit space is a 4-dimensional manifold X*. The
projection 7: M3 — X* is a principal S!-bundle and 2win/L: TM®> — R-i =
G! is a connection in this bundle. Since %g =0 and Zp =0, X* admits a
Riemannian metric and an almost complex structure which is integrable (see
e.g. [3]). Denote by Q the Kahler form of X*. Then

X, Y) = g(X,0(Y)) = §dn(X,Y)

and we conclude df) = 0, i.e. X* is a Kahler manifold. Suppose now in
addition that M?° is an Einstein-Sasaki space. The O’Neill formulas yield
that X is an Einstein-K#hler manifold with scalar curvature R = %R =24.
Consequently, X* is analytically isomorphic to §2 x S2, P%(C) or to one of
the del Pezzo surfaces P, (3 < k < 8; Py is the surface obtained by blowing
up k points in general position in P%(C), see e.g. [2]). Next we study the
topological type of the S-fiber bundle 7: M5 — X*%. The curvature form
of the connection 2xin/L is 0* = (27i/L)dn. Consequently, the Chern class
¢} € H%(X*;R) is given by ¢} = 0*/2mi = dn/L. On the other hand, since
X* is an Einstein-Kahler manifold its Chern class is given by the Ricei form

1 R 3 3 3L
= Q ic = — — = — = — = —c*
@ Ric 2r 4 0 7rQ 27rd77 ~27rc1
and we obtain the relation 3z
1 = -276’{

between the Chern class ¢; of X* and the Chern class ¢} of the S!'-bundle
m: M® — X% X*is simply connected. We now apply the Thom-Gysin
sequence of the fibration 7: M® — X* and conclude:

(a) HY(M5;Z) = 0 (since ¢} # 0).

(b) H4(M?3; 2) = HA(X*; 2)/¢; U H?(X*%; Z).

() 0 = wo(M3) = 7*wa(X?). If wo(X?) # 0 then ¢ = wy(X?)
=¢; mod?2. ;

In case wa(X*) # 0 the spin structure of M implies an additional condi-
tion, namely ‘

% (1 - g—Z) e1(X*) € HY(X; 2).

(d) The Killing spinor % on M3 defines an SU(2)-reduction Q° of the frame
bundle. Consequently, we have an isomorphism

T*TcX4 = Th = Qo XSU(2) C2
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of 2-dimensional complex vector bundles. This isomorphism yields 7*¢; (X4) =
0 because the first Chern class of any SU(2)-bundle vanishes. The Thom-
Gysin sequence imposes a further restriction: ¢;/¢} € Z.

We now classify all possible Einstein spaces M.

First case: X* = P?(C). If X* is analytically isomorphic to P2(C) and
admits an Einstein-Kéhler metric then X* is analytically isometric to P?(C)
(see e.g. [15]). The cohomology algebra H*(P?(C)) is isomorphic to Z[a]/(a®)
and the first Chern class is given by the ¢; = 30, o € H?(P*(C)). Using
the restrictions (c) and (d) stated above we have two possibilities for the
Chern class ¢} = o, 3o with m(M?) = H4(M?®) = 0, Z; and L = 2r,27/3.
Since we know the curvature tensor of P?(C) as well as the curvature form
Q* = (2mi/L)dn = 4miQ/L of the Riemannian submersion 7: M° — X* we
can apply the O’Neill formulas again and conclude that M?® is conformally
flat. Consequently, M® is isometric to S° in case ¢} = « and isometric to
85/Z3 in case ¢; = 3a. P2?(C) is a homogeneous Einstein-Kihler manifold.
A simple geometric argument shows that we can lift the isometries of P?(C)
to isometries of M°®, i.e. M® = §%/Z; is the homogeneous space of constant
curvature one and fundamental group m; (M®) = Zs.

Second case: X* = S% x 2. Suppose that X is analytically isomorphic
to §2 x 82 = G42 = Q, = the Klein quadric in P3(C). Moreover, X*
has an Einstein-Kahler metric with positive scalar curvature. Then the Lie
algebra b of all holomorphic vector fields on X* is the complexification of
the Lie algebra i of all Killing vector fields (see [14]) and we conclude that
dimgi= dimg § = 6, i.e. X* admits a 6-dimensional group of isometries. We
now apply a result of L. Berard Bergery (see e.g. [1]) stating in our situation
that X* is a symmetric Einstein-K#hler structure on S? x 2. Consequently,
X4 is analytically isometric to S2 x §2. The cohomology algebra of §% x §? is
H*(S?% x §%) = A(e, B) and its first Chern class is given by ¢; = 2(a+ ). We
again have two possibilities ¢} = (a+£), 2(a+/3) with m (M®) = H*(M®) =0,
Zy and L =47 /3,27/3.

Now we study the geometry of the Riemannian submersion 7: M3 — X*
and conclude that M3 is isometric to the Stiefel manifold V4 2 or to Va | Z;
with the Einstein metric considered in [11]. The calculation in [4] shows that
this space admits a nontrivial Killing spinor.

Third case: X* = P,. If X* is analytically isomorphic to a del Pezzo
surface Px (3 < k < 8) there is only one possibility for M3, namely the
simply-connected S-fiber bundle over P;. Indeed, the cohomology algebra
of Py is generated by elements o, Ey,--- , Ex € H?(Px) and the first Chern
class is given by

c1(Pe)=3a+E1+ -+ E;
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(see e.g. [2]). Using the restriction for ¢} given above we see that there remains
only one possibility,
ci=3c+E + - +Eg

with 7, (M%) = H4(M5) = HY(P)/c} U H?(P;) = 0.

Summing up we proved the following

Theorem 4. Let (M3, g) be an Einstein space with Killing spinor ¢ and
scalar curvature R = 20. Suppose in addition that the associated contact
structure is regular. Then there are three possibilities:

(1) M?® is isometric to S5 or S®/Zs with the homogeneous metric of con-
stant curvature.

(2) M is isometric to the Stiefel manifold Va2 or Vya/Zy with the Einstein
metric considered in {11],[4].

(3) M3 is diffeomorphic to the simply-connected S* -fiber bundle with Chern
class ¢ = ¢1(Py) over a del Pezzo surface P, (3 <k < 8).

Remark. 8. Sulanke (see [19]) classified all spaces S5/T of constant cur-
vature with a Killing spinor. It turned out that except for the case S°/Z3 all
other examples defined a nonregular contact structure. The integral curves
of & are all closed but have different length. It seems to be interesting, us-
ing higher-dimensional Seifert-fibrations, to classify all Einstein spaces with
Killing spinors such that the integral curves are closed, but with different
length. The orbit space X* in this case is smooth except for a finite number
of points.
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